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Received 11 July 1983, in final form 26 September 1983 

Abstract. For a general time-dependent and the Bateman-Morse-Feshbach-Bopp 
Lagrangian the Feynman path integral is evaluated by establishing a polynomial representa- 
tion of the Van Vleck determinant. 

1. Introduction 

Starting with the pioneering work of Feynman (1948), there are many papers and 
even books dealing with the path integral method. In particular, for quadratic 
Lagrangians, one can obtain analytical results by using various procedures (Faddeev 
1975, Feynman and Hibbs 1965, Gel’fand and Yaglom 1960, Klauder 1960, Marinov 
1980, Montroll 1952, Papadopoulos 1978, Schweber 1962). However, there are only 
a few papers reporting on path integral calculations for the case of a particle which is 
dissipating energy to the environment with which it is coupled. (On the other hand, 
one may note that this field has been extensively studied in the framework of other 
methods; see, for example, Dekker (1981), Messer (1979), Haken (1975), Colegrave 
and Abdalla (1981, 1982), Vaidyanathan (1982), Remaud and Hernandez (1980), 
Caldirola and Lugiato (1982), Daniel (1982), Gisin (1981)). A simplified approach 
could be obtained by considering convenient single particle Lagrangians (Alicki and 
Messer 1982, Papadopoulos 1974), although a proper quantum mechanical treatment 
will include the dynamics of both the particle and the environment (Feynman and 
Vernon 1963, Alicki 1982, Bartnik and Hasse 1982). 

This note establishes a single polynomial representation for the Van Vleck deter- 
minant or, more precisely, for the result of multiple integration, as defined by Feynman 
and Hibbs (1965) for quadratic Lagrangians, over the classical trajectories for a fixed 
‘n’ partition of the time interval. Then, the limit n + 03 appears immediately and the 
introduction of a convenient differential equation is avoided. We give explicit results 
for the following two specific Lagrangians: 

L(q, 4,  t )  = t p ( t ) 4 2  - 1 p ( W ( W 2 q 2  - a ( f )p  1’2(l)q, (1.1) 

i ( q , q * , 4 , 4 * ,  t ) = ( q + A q ) ( 4 * - A q * ) - ; 2 q q * - ~ * ( t ) q - ~ ( t ) q * ,  (1.2) 

where p, D, a and a* are functions of time. The Lagrangian (1.1) describes a driven 
oscillator where mass, frequency and driving force are time dependent. The only 
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restrictive conditions we consider are initial conditions: 

p ( t 1 )  = D(t1) = 1, 

and the condition 

D(t).n’-a(2f(t)+f2(f)) = w 2 > o ,  (1.3) 

f ( r )  = G ( t ) / p ( t )  (1.4) 

where w is a constant frequency and the function f ( t )  is defined as 

with @ ( t )  as the time derivative of ~ ( t ) .  
Then, the cases presented by Alicki and Messer (1982) and Papadopoulos (1974) 

as well as Colegrave and Abdalla (1981, 1982), Landovitz et a1 (1979, 1980), 
Vaidyanathan (19821, Remaud and Hernandez (1980), in the framework of the 
Hamiltonian formalism, correspond to a particular choice of the functions p, 0, a and 
a”. The Lagrangian (1.2) was introduced first by Bateman (1931) and was rediscovered 
and analysed subsequently by Morse and Feshbach, Bopp, Feshbach and Tikochinsky 
(for the corresponding references see the review article of Dekker (1981)). Hereafter 
we call the Lagrangian (1.2) the BMFB (Bateman, Morse, Feshbach, Bopp) Lagrangian. 
The corresponding Hamiltonian can be connected with the physical energy by imposing 
a restriction on the classical trajectories q(  t ) ,  q*( t ) .  Then the BMFB Lagrangian leads 
to the time dependent Caldirola-Kanai Hamiltonian (Dekker 1981, Caldirola and 
Lugiato 1382). Therefore, the importance of the BMFB Lagrangian lies in the possibility 
to generate other convenient Lagrangians. However, no path integral calculation with 
the  BMFB Lagrangian has yet been reported in the literature. 

2. The calculation of Feynman propagator 

According to Feynman (1948) and Feynman and Hibbs (1965), the amplitude of 
probability (the quantum propagator) to go from q1 at t l  to q2 at t2 and from ( q l ,  q ; )  
at f 1  to (q2 ,  4 ; )  at t 2 ,  respectively, is given for the Lagrangians (1.1) and (1.2) by: 

where 

where 
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It is easy to see that the element of integration in (2.1) is defining a path integration 
over the trajectory y ( t )  (rather than over q ( t ) ) ,  that is given by 

In terms of y ( t )  the Lagrangian (1.1) becomes 

where 

with w defined by relation (1.3). The Lagrangian f(y, y, t )  describes the usual driven 
oscillator. 

Introducing the classical trajectories one solves the corresponding integrals in (2.1) 
and (2.3) by using the following formal results of Rzewuski (1969): 

exp(ixy) dx dy  = 277. (2.8) ii I-.; -X 

fX 

exp( *ix2) dx = (stir)’”, 

The first integral in (2.8) is a sum of two Fresnel integrals 
f m  

exp(*ix2) d x = J g ( C ( x + m ) f i S ( x + m ) )  

where 

C ( x ) = { ~ c o s ( ~ r 2 )  dt, S ( x )  = fi sin( 5 t 2 )  dt. 

Since C( x -+ CO) = S (  x + a) = 4, one finds 

exp( *ix2) dx = &( 1 * i) = J?r exp( *i77/4), 

The second integral in (2.8) can be formally integrated by using the 6 function in 
terms of a Fourier integral: 

+X a2 +a- j-, dx I-, exp(ixy) dy = dx 2 d ( x )  = 277. 

One obtains 

(2.10) 

where the functions f k ( &  v), k = 1 , 2 , .  . . , are defined by a recurrence relation: 

f I ( 6 ,  77) = 1/53 f k + 1 ( 6 ,  7) = (e -Tfk(6 ,  (2.11) 
x = 2- w2T2/n2,  x’= 2-  (&2+A2)T2/n2 ,  y’ = 1 - A2T2/ n 2 .  
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Here, So, i o  are the values of action along the classical trajectories and are given by 

s o =  2 sin wT ( r ~ Y i + Y : ~ c o s ~ T - 2 Y l Y 2 1 - 2 ~ Y l Y 2 ~ t l ~ + Y 2 Y l ~ r , ~ l  

(2.12) 

with 

i = 1 , 2 ,  Y , ( t )  =- a ( s )  sin w ( s - t , )  ds, YI = P*1'2(tl)ql, 
w I,: 

and 

with 

(2.13) 

di(t) =T a ( s )  eAr sin G ( s - t , )  ds, 6: ( t )  = f Ir: a*( s) e-" sin G( s - t , )  ds, 5' 1, 

ii = e"tqi, 4: = e-A'zq:. 

Furthermore, we have to determine the limits n+co in (2.9) and (2.10). Instead of 
following the usual procedure (see for example Papadopoulos (1978), Truman (1976) 
and the references therein) we propose another one: 
Let us assume for the functions f k ( &  T), defined by (2.1 l ) ,  the following representation: 

(2.14) 

where pk(& 7) are polynomials in two variables. From the recurrence relation (2.11) 
one gets a corresponding relation for the polynomials pk(& 7): 

f k ( 6 ,  77) = p k - I ( & ,  V ) / P k ( t ,  71, k = 1 , 2 , .  . . , 

Po(& 7) = 1, PI( [>  77) = 5, pk+l(&, 7) =tpk(6, 7)- 7pk-1('!, 71, 

which yields the results: 

Nk (k- i ) !  

,=o ( k  - 2i)! i! 
Pk(6, 7) = 5k-2 i71  (2.15) 

where 

Nk = k/2  for k even, Nk = ( k  - 1)/2 for k odd. 

Using (2.14) we obtain for the products appearing in (2.9) and (2.10) the expressions 
( n +  n +  1): 
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Since for n -, 00 the variables x ,  x' and f approach the values x = x' = 2 and y' = 1, we 
expand P,,(x, 1) and P,,(x', f )  in Taylor series about x = x'= 2 and y'= 1. For that 
purpose we have to introduce the derivatives of Pk (6, 7) at 6 = 2 and 7 = 1, defined by 

n = l  

Inserting the polynomials (2.15) we calculate 

pi-"." =(-1)U- s! ( k + l + s - U ) !  
( 2 ~ + l ) !  ( k - s - U ) !  ' 

In particular, we have: 

S! 
,;-,,U = (-1)"- lim - for s and U fixed, 

1 
n+cF n2'+l (2s+  l)! 

and thus, by using a Taylor expansion, we get the result 

1 ( w 2 + h 2 ) T 2  A2T2) =-, sin U T  
n UT 

lim - n + 1 

(2.16) 

(2.17) 

(2.18) 

Now the propagators (2.9) and (2.10) are completely determined. If we choose 
D ( t ) = p ( t ) = l  in the Lagrangian ( l . l ) ,  then we recognise in (2.9) the well known 
Green function for a driven oscillator with unit mass. In the limit 52 -, 0 and p ( t )  = 1 
we obtain the case of a particle with unit mass driven by a force. If we choose D( t )  = 1 
and p (  t )  = e-A(r-rl) , we get the results presented by Papadopoulos (1974), Colegrave 
and Abdalla (1981) and Landovitz e? a1 (1979). 

If we impose for the propagator (2.10) the conditions 

q1 e"'] = qT q2 e"'> = qT e-A'z, a ( t ) = a * ( t ) = O ,  (2.19) 

then the classical action (2.13) becomes: 

.. G G 
so = [(s': + q : )  cos ;T-24,4,]+ [(if2 + c j T 2 )  COS GT-2cjfizl. 2 sin GT 2 sin GT 

(2.20) 

This result means that under the conditions (2.19) the propagator of the BMFB 

Lagrangian is the product of the propagators of two time-dependent oscillators of the 
type (1.1). The masses of these oscillators are varying according to p ( f )  -e-"' and 
e2Ar, but their frequencies remain the same G. This result corresponds to the transforma- 
tion of the BMFB Hamiltonian into a sum of two Caldirola-Kanai Hamiltonians by 
using a sequence of canonical transformations (Dekker 1981). 

3. Concluding remarks 

We have calculated the Feynman path integral for two Lagrangians, which could 
account for the dissipation effects. This was done by establishing a single polynomial 
representation for the Van Vleck determinants. 
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Following the ideas of Feynman and Hibbs ( 1 9 6 9 ,  we could suppose that the path 
integral gives the corresponding quantum propagators, provided the usual semigroup 
properties of time evolution are satisfied. In that case we can build up the whole 
quantum mechanics, namely the Schrodinger equation, time evolution operators, and 
the other quantities. It would then be interesting to compare the quantum mechanics 
obtained in this manner with that from other methods (see the reviews Dekker (1981), 
Messer (1979), and also the references Daniel (1982), Gisin (1981)). This work is in 
progress. 
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